2016
DOI: 10.18637/jss.v074.i05
|View full text |Cite
|
Sign up to set email alerts
|

PerFit: An R Package for Person-Fit Analysis in IRT

Abstract: Checking the validity of test scores is important in both educational and psychological measurement. Person-fit analysis provides several statistics that help practitioners assessing whether individual item score vectors conform to a prespecified item response theory model or, alternatively, to a group of test takers. Software enabling easy access to most person-fit statistics was lacking up to now. The PerFit R package was written in order to fill in this void. A theoretical overview of relatively simple pers… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
60
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
7
1
1
1

Relationship

1
9

Authors

Journals

citations
Cited by 72 publications
(61 citation statements)
references
References 51 publications
0
60
0
1
Order By: Relevance
“…1. We used the cutoff function in the R package PerFit (Tendeiro, Meijer, & Niessen, 2016) to simulate 50,000 test takers. The cutoff function takes in (0, 1) response data from J test takers across I items as input and fits a Rasch model to it resulting in estimated difficulty item parameters for each item and predicted ability parameters for each test taker.…”
Section: Irt-based and Rt Methodsmentioning
confidence: 99%
“…1. We used the cutoff function in the R package PerFit (Tendeiro, Meijer, & Niessen, 2016) to simulate 50,000 test takers. The cutoff function takes in (0, 1) response data from J test takers across I items as input and fits a Rasch model to it resulting in estimated difficulty item parameters for each item and predicted ability parameters for each test taker.…”
Section: Irt-based and Rt Methodsmentioning
confidence: 99%
“…Guttman Error (Gnormed): Guttman error is defined as the number of item pairs in which a learner answers an easier item incorrectly and a more difficult item correctly, normalized by the total number of pairs [16]. We used a non-parametric model implemented in R's Per Fit [26]. It is computed on all possible pairs.…”
Section: Methodsmentioning
confidence: 99%
“…Los PAR se identificaron a través de cuatro índices no paramétricos basados en la Teoría de Respuesta al Ítem: C (Sato, 1975), U3 (van der Flier, 1980), MCI (Harnisch & Linn, 1981) y H T (Sijtsma, 1986;Sijtsma & Mejer, 1992), al ser índices que funcionan adecuadamente en situaciones diversas (Karabatsos, 2003;Tendeiro & Meijer, 2014). Para el cálculo de los índices se empleó el paquete PerFit de R (Tendeiro, 2015;, tratando como errores las respuestas en blanco.…”
Section: Análisis De Datosunclassified