SummaryThe Escherichia coli Chi site 5Ј-GCTGGTGG-3Ј modulates the activity of the powerful dsDNA exonuclease and helicase RecBCD. Genome sequence analyses revealed that Chi is frequent on the chromosome and oriented with respect to replication on the E. coli genome. Chi is also present much more frequently than predicted statistically for a random 8-mer sequence. Although it is assumed that Chi is ubiquitous, there is virtually no proof that its features are conserved in other microorganisms. We therefore identified and analysed the Chi sequence of an organism for which the full genome sequence was available, Haemophilus influenzae. The biological test we used is based on our finding that rolling circle plasmids provide a specific substrate for RecBCD analogues in different microorganisms. Unexpectedly, several related sequences, corresponding to 5Ј-GNTGGTGG-3Ј and 5Ј-G(G/C)TGGAGG-3Ј, showed Chi activity. As in E. coli, the H. influenzae Chi sites are frequent on the genome, which is in keeping with the need for frequent Chi sites for dsDNA break repair of chromosomal DNA. Although statistically over-represented, this feature is less marked than that of the E. coli Chi site. In contrast to E. coli, the H. influenzae Chi motifs are only slightly oriented with respect to the replication strand. Thus, although Chi appears to have a highly conserved biological role in attenuating exonuclease activity, its sequence characteristics and statistical representation on the genome may differ according to the particular features of the host.