Somatic growth rate data for wild sea turtles can provide insight into life‐stage durations, time to maturation, and total lifespan. When appropriately validated, the technique of skeletochronology allows prior growth rates of sea turtles to be calculated with considerably less time and labor than required by mark‐–recapture studies. We applied skeletochronology to 10 dead, stranded green turtles Chelonia mydas that had previously been measured, tagged, and injected with OTC (oxytetracycline) during mark–recapture studies in Hawaii for validating skeletochronological analysis. We tested the validity of back‐calculating carapace lengths (CLs) from diameters of LAGs (lines of arrested growth), which mark the outer boundaries of individual skeletal growth increments. This validation was achieved by comparing CLs estimated from measurements of the LAG proposed to have been deposited closest to the time of tagging to actual CLs measured at the time of tagging. Measureable OTC‐mark diameters in five turtles also allowed us to investigate the time of year when LAGs are deposited. We found no significant difference between CLs measured at tagging and those estimated through skeletochronology, which supports calculation of somatic growth rates by taking the difference between CLs estimated from successive LAG diameters in humerus bones for this species. Back‐calculated CLs associated with the OTC mark and growth mark deposited closest to tagging indicated that annual LAGs are deposited in the spring. The results of this validation study increase confidence in utilization of skeletochronology to rapidly obtain accurate age and growth data for green turtles.