Heritable color polymorphisms have a long history of study in evolutionary biology, though they are less frequently examined today than in the past. These systems, where multiple discrete, visually identifiable color phenotypes coâoccur in the same population, are valuable for tracking evolutionary change and ascertaining the relative importance of different evolutionary mechanisms. Here, we use a combination of citizen science data and field surveys in the Great Lakes region of North America to identify patterns of color morph frequencies in the eastern gray squirrel (Sciurus carolinensis). Using over 68,000 individual squirrel records from both large and small spatial scales, we identify the following patterns: (a) the melanistic (black) phenotype is often localized but nonetheless widespread throughout the Great Lakes region, occurring in all states and provinces sampled. (b) In Ohio, where intensive surveys were performed, there is a weak but significantly positive association between color morph frequency and geographic proximity of populations. Nonetheless, even nearby populations often had radically different frequencies of the melanistic morph, which ranged from 0% to 96%. These patterns were mosaic rather than clinal. (c) In the Wooster, Ohio population, which had over eight years of continuous data on color morph frequency representing nearly 40,000 records, we found that the frequency of the melanistic morph increased gradually over time on some survey routes but decreased or did not change over time on others. These differences were statistically significant and occurred at very small spatial scales (on the order of hundreds of meters). Together, these patterns are suggestive of genetic drift as an important mechanism of evolutionary change in this system. We argue that studies of color polymorphism are still quite valuable in advancing our understanding of fundamental evolutionary processes, especially when coupled with the growing availability of data from citizen science efforts.