Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A new method of background elimination and baseline correction is proposed, since there are background signal and larger baseline signal in the first harmonic (1f) of the tunable diode laser absorption spectroscopy (TDLAS). The laser-associated intensity modulation signal, electronic noise, and optical interference fringes of the 1f background are analyzed. Harmonic detection in none absorption spectral region (HDINASR) is used to eliminate the background signal. Then the relationship curve between current and intensity is given in different operating temperatures to design a remaining baseline correction method after eliminating the background. The principle of background signal searching and the LabView software flow chart are also given. The TDLAS experimental system is designed to detect hydrogen fluoride (HF) gas. According to spectral line selection principle, the absorption line -1312.59 nm is selected, whose operating temperature is set at 27.0 ℃ and the background temperature is set at 30.2 ℃. After eliminating the background and correcting the baseline, signal distortion is significantly improved and baseline is corrected. Then it is verified that the method is valid at other operating temperature of the laser (26.7-27.2). And the improvement of HF gas concentration is quantitatively analyzed. It is convenient for the subsequent processing of 1f signal.
A new method of background elimination and baseline correction is proposed, since there are background signal and larger baseline signal in the first harmonic (1f) of the tunable diode laser absorption spectroscopy (TDLAS). The laser-associated intensity modulation signal, electronic noise, and optical interference fringes of the 1f background are analyzed. Harmonic detection in none absorption spectral region (HDINASR) is used to eliminate the background signal. Then the relationship curve between current and intensity is given in different operating temperatures to design a remaining baseline correction method after eliminating the background. The principle of background signal searching and the LabView software flow chart are also given. The TDLAS experimental system is designed to detect hydrogen fluoride (HF) gas. According to spectral line selection principle, the absorption line -1312.59 nm is selected, whose operating temperature is set at 27.0 ℃ and the background temperature is set at 30.2 ℃. After eliminating the background and correcting the baseline, signal distortion is significantly improved and baseline is corrected. Then it is verified that the method is valid at other operating temperature of the laser (26.7-27.2). And the improvement of HF gas concentration is quantitatively analyzed. It is convenient for the subsequent processing of 1f signal.
In this paper, we study the effects of laser scanning step length and width characteristic on tunable diode laser absorption spectrum detection system, theoretically derive the principle of interaction between laser and gas absorption line, and analyse the principle of effects of step duration and height about scanning signal (ramp) on the laser central wavelength. After setting the simulation parameters, the curve between the number of ramp steps and the maximum scanning error is obtained. If the scanning signal has 4000 steps in one cycle, the error is less than 1‰ with full width at half maximum (FWHM) value being greater than 0.01 cm-1. The curves between laser linewidth and maximum amplitude or linewidth error are simulated, and also the relationship between laser linewidth and minimum FWHM is given with linewidth error maximum values being 1% and 0.5%. On condition that temperature coefficient n is 0.9 and air-broadened coefficient is 0.005, this paper gives the relationship among pressure, temperature and FWHM, from which the suitable pressure P and temperature T range are deduced. It can provide the relevant theoretical basis for selecting the laser and gas absorption lines and also for improving the system detection limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.