Natural levels of radioactivity on the Earth vary by more than a thousand-fold; this spatial heterogeneity may suffice to create heterogeneous effects on physiology, mutation and selection. We review the literature on the relationship between variation in natural levels of radioactivity and evolution. First, we consider the effects of natural levels of radiation on mutations, DNA repair and genetics. A total of 46 studies with 373 effect size estimates revealed a small, but highly significant mean effect that was independent of adjustment for publication bias. Second, we found different mean effect sizes when studies were based on broad categories like physiology, immunology and disease frequency; mean weighted effect sizes were larger for studies of plants than animals, and larger in studies conducted in areas with higher levels of radiation. Third, these negative effects of radiation on mutations, immunology and life history are inconsistent with a general role of hormetic positive effects of radiation on living organisms. Fourth, we reviewed studies of radiation resistance among taxa. These studies suggest that current levels of natural radioactivity may affect mutational input and thereby the genetic constitution and composition of natural populations. Susceptibility to radiation varied among taxa, and several studies provided evidence of differences in susceptibility among populations or strains. Crucially, however, these studies are few and scattered, suggesting that a concerted effort to address this lack of research should be made. has sufficient energy to ionize an atom. Ionizing radiation consists of particles that cannot penetrate paper, particles that can penetrate paper, but not an aluminium sheet, and rays that can penetrate paper, aluminium and thin layers Biological Reviews 88 (2013) 226-254