Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling. Eight common performance-linked operational taxonomic units (OTUs) were identified within both the ilea (180, 492, and 564-566) and ceca (140-142, 218-220, 284-286, 312, and 482) across trials. OTU 564-566 was associated with lower performance, while OTUs 140-142, 482, and 492 were associated with improved performance. Targeted cloning and sequencing of these eight OTUs revealed that they represented 26 bacterial species or phylotypes which clustered phylogenetically into seven groups related to Lactobacillus spp., Ruminococcaceae, Clostridiales, Gammaproteobacteria, Bacteroidales, Clostridiales/Lachnospiraceae, and unclassified bacteria/clostridia. Where bacteria were identifiable to the phylum level, they belonged predominantly to the Firmicutes, with Bacteroidetes and Proteobacteria also identified. Some of the potential performance-related phylotypes showed high sequence identity with classified bacteria (Lactobacillus salivarius, Lactobacillus aviarius, Lactobacillus crispatus, Faecalibacterium prausnitzii, Escherichia coli, Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides vulgatus, and Alistipes finegoldii). The 16S rRNA gene sequence information generated will allow quantitative assays to be developed which will enable elucidations of which of these phylotypes are truly performance related. This information could be used to monitor strategies to improve feed efficiency and feed formulation for optimal gut health.Because feed constitutes approximately 70% of the cost of raising broiler chickens (1), the most common measures of bird performance have been linked to weight gain and feed efficiency. Broiler performance is closely linked to the genetics, diet, age, and rearing environment of the bird (1,23,32,54). Genetic selection has largely driven the vast improvements observed in weight gain and feed efficiency in meat chickens over the last 50 years, although a small proportion of these improvements have been attributed to nutrition and other management practices (32). The genetic changes associated with improved weight gain and feed efficiency have also resulted in changes to the gut physiology and gut microbial community composition of birds (44). Diet, age, and environmental factors have also been reported to influence the gut microbiota (43,71,72). Therefore, there appears to be a clear link between bird performance and gut microbiota composition.In medicine, much interest has already focused on the influence of the gut microbiota in human health (35,78) and energy metabolism (73,74,83).