Abstract:The origin of life and the origin of the universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics (HGD) cosmology predicts hydrogen-helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P etc.) and abundant liquid water domains required for first life and the means for wide scattering of life prototypes. The first life likely occurred promptly following the plasma to gas transition 300,000 years after the big bang while the planets were still warm, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio, and infrared space telescopes suggest life on Earth was neither first nor inevitable.