htrA is a gene coding for the stress inducible HtrA protein, identified as a temperature stress response protein in several Gram positive and Gram negative bacteria. Growth rates at several temperatures (30ºC, 37ºC and 42ºC) were compared for Yersinia pseudotuberculosis YPIII wild strain and the isogenic mutant 1YPIII (htrA::Km), which was obtained by insertion of a kanamycin resistance cassette into the htrA gene.Y. pseudotuberculosis 1YPIII growth rates did not differ from the Y. pseudotuberculosis wild strain growth rates when cultivated at 30°C, which is consistent with a non-essential role for the HtrA protein at this temperature. However, 1YPIII mutant strain growth rate decreased by 18.73% at 37°C, and by 60.14% at 42°C, as compared to the Y. pseudotuberculosis YPIII wild strain growth rate. HtrA complementation in the strain 1YPIII/pAHTRA46 suppressed the differences in growth rates. Immunoblot analysis confirmed the absence of the HtrA protein in the 1YPIII mutant strain at any of the growth temperatures under analysis. In silico predictions were obtained for the three-dimensional structure of amino acid sequence belonging to HtrA from Y. pseudotuberculosis YPIII, Yersinia pestis CO92, using the protein data bank structure 1KY9:B from Escherichia coli, as template. The model's quality was found to be acceptable. Southern blot analysis shows a single htrA gene signal. These data indicate that the unique htrA gene in Y. pseudotuberculosis YPIII is required for the adaptive response of this species to high temperatures and although it is not a pathogenicity factor, it can be targeted by antibiotics.