Reversible protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) residues plays a critical role in regulation of vital processes in the cell. Despite of considerable progress in our understanding of the role of this modification in bacterial physiology, the dynamics of protein phosphorylation during bacterial growth has rarely been systematically addressed. In addition, little is known about in vivo substrates of bacterial Ser/Thr/Tyr kinases and phosphatases. An excellent candidate to study these questions is the Gram-positive bacterium Bacillus subtilis, one of the most intensively investigated bacterial model organism with both research and industrial applications. Here we employed gel-free phosphoproteomics combined with SILAC labeling and high resolution mass spectrometry to study the proteome and phosphoproteome dynamics during the batch growth of B. subtilis. We measured the dynamics of 1666 proteins and 64 phosphorylation sites in five distinct phases of growth. Enzymes of the central carbon metabolism and components of the translation machinery appear to be highly phosphorylated in the stationary phase, coinciding with stronger expression of Ser/Thr kinases. We further used the SILAC workflow to identify novel putative substrates of the Ser/Thr kinase PrkC and the phosphatase PrpC during stationary phase. The overall number of putative substrates was low, pointing to a high kinase and phosphatase specificity. One of the phosphorylation sites affected by both, PrkC and PrpC, was the Ser281 on the oxidoreductase YkwC. We showed that PrkC phosphorylates and PrpC dephosphorylates YkwC in vitro and that phosphorylation at Protein phosphorylation on serine, threonine and tyrosine (Ser/Thr/Tyr) is rapidly becoming a prominent avenue of research in microbiology. Hanks-type Ser/Thr kinases and BYkinases (bacterial Tyr kinases) were shown to have implications in vital processes such as pathogenicity (1, 2), DNA repair, heat shock response (3), cell morphology, and separation (4). In certain pathogenic species like Salmonella, Listeria and Shigella they play a vital role in virulence (5). Functions of Ser/Thr/Tyr phosphorylation have been extensively studied in Bacillus subtilis, a Gram-positive model bacterium widely used in basic research and industrial applications. It was shown that B. subtilis Ser/Thr kinases are involved in regulation of catabolic repression via phosphorylation of the CcpA co-repressor HPr (6). They are also involved in spore development via phosphorylation of a recombinase RecA (7), in spore germination (8), and in regulation of the general stress sigma factor SigB via phosphorylation of . Importantly, Ser/Thr kinases can also regulate complementary signal transduction systems as shown by phosphorylation of the two-component kinase DegS (10). In addition, B. subtilis tyrosine kinase PtkA plays an important role in DNA replication by phosphorylating SSB proteins (11,12). It is involved in exopolysaccharide synthesis via phosphorylation of UDP-glucose dehydrogenases (13), a...