The phage shock protein (Psp) stress-response system protects bacteria from envelope stress and stabilizes the cell membrane. Recent work from our group suggests that the psp systems have evolved independently in distinct Gram-positive and Gram-negative bacterial clades to effect similar stress response functions. Despite the prevalence of the key effector, PspA, and the functional Psp system, the various genomic contexts of Psp proteins, as well as their evolution across the kingdoms of life, have not yet been characterized. We have developed a computational pipeline for comparative genomics and protein sequence-structure-function analyses to identify sequence homologs, phyletic patterns, domain architectures, gene neighborhoods, and evolution of the candidates across the tree of life. This integrative pipeline enabled us to make several new discoveries, including the truly universal nature of PspA and the ancestry of the PspA/Snf7 dating all the way back to the Last Universal Common Ancestor. Using contextual information from conserved gene neighborhoods and their domain architectures, we delineated the phyletic patterns of all the Psp members. Next, we systematically identified all possible ‘flavors’ and genomic neighborhoods of the Psp systems. Finally, we traced their evolution, leading us to several interesting findings of their occurrence and co-migration that together point to the functions and roles of Psp in stress-response systems that are often lineage-specific. Conservation of the Psp systems across bacterial phyla emphasizes the established importance of this stress response system in prokaryotes, while the modularity in various lineages is indicative of adaptation to bacteria-specific cell-envelope structures, lifestyles, and adaptation strategies. We also developed an interactive web application that hosts all the data and results in this study that researchers can explore (https://jravilab.shinyapps.io/psp-evolution).