Plant diseases cost the global economy billions of US dollars every year. The problem has mainly been addressed by using chemical pesticides, but recently, the use of ants has shown promising effects against plant pathogens. However, the mechanisms accounting for these effects have not yet been determined. One possible explanation is antimicrobial microorganisms associated with ants. Through controlled laboratory experiments, we investigated the inhibitory effects of wood ants (Formica polyctena) and their associated microorganisms against economically important plant pathogenic fungi. All live ants, extracts from crushed ants, and extracts from washed ants significantly inhibited the apple brown rot (Monilinia fructigena) while yielding the growth of other microbes. Furthermore, all investigated wood ants transferred microorganisms to their surroundings within 10 s when walking across a surface. We isolated the most dominant microorganisms deposited by walking ants and from washed ant extracts (i.e., strains likely found on the surface of ants), resulting in four bacterial cultures and one yeast. Two of these isolates, strain I3 (most closely related to Pseudomonas sichuanensis and P. entomophila) and strain I1b (most closely related to Bacillus mycoides), showed inhibitory effects against apple brown rot and apple scab (Venturia inaequalis), while strain I3 also inhibited gray mold (Botrytis cinerea) and Fusarium head blight (Fusarium graminearum). These results suggest that wood ants have potential as biological control agents against commercially relevant plant pathogens, and that their inhibitory effect might be at least partially caused by antibiotic compounds produced by their associated microorganisms.