2020
DOI: 10.1134/s2070048220060095
|View full text |Cite
|
Sign up to set email alerts
|

Balance and Characteristic Finite Difference Schemes for Equations of the Parabolic Type

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 5 publications
0
2
0
1
Order By: Relevance
“…It is worth pointing out that the values of operators (21), (22) depend only on those of the function f (x k,λ ) at the zeros x k,λ of the functions y(x, λ). We set…”
Section: Atmentioning
confidence: 99%
See 1 more Smart Citation
“…It is worth pointing out that the values of operators (21), (22) depend only on those of the function f (x k,λ ) at the zeros x k,λ of the functions y(x, λ). We set…”
Section: Atmentioning
confidence: 99%
“…In addition, when evaluating the Fourier coefficients via numerical integration of rapidly oscillating functions, the computational error of such methods increases considerably, which hinders their use in applied numerical problems. The theory of difference schemes has also been investigated very thoroughly (see, for example, [21]- [27]). This approach to solution of mixed boundary value problems for hyperbolic type equations works quite well in problems of applied mathematics.…”
Section: Introductionmentioning
confidence: 99%
“…Таким образом, абсолютно устойчивые схемы Саульева, Дюффорта-Франкела и «классики» аппроксимируют уравнение теплопроводности и сходятся при выполнении почти столь же жестких условий, как и для классической явной схемы [5][6][7]. Обобщить закон Фурье, добавив производную потока по времени, умноженную на малый параметр, предлагается в [8]. При этом уравнение теплопроводности становится сингулярно возмущенным гиперболическим уравнением, а условие устойчивости явной схемы для него менее жестким.…”
unclassified