Shared bikes can help cities achieve carbon neutrality goals. Cleaning and disinfection are vital procedures of the maintenance of shared bikes, especially during the COVID-19 pandemic because shared bikes could be a transmission intermediary of viruses. This study proposes an optimization model of the cleaning and disinfection scheme of the dockless shared bikes. The disinfection is assumed to be performed at night, when the usage is lowest. By regarding the disinfection staff as traveling salesmen, the model is formulated as an extension of the Multidepot Multiple Traveling Salesman Problem (MDMTSP). The objective function is to minimize the total cost; which consists of the cost associated with the working time and per-capita cost of the disinfection staff. A heuristic algorithm combining
k
-means clustering and genetic algorithm (K-GA) is adopted to find the lower bound solution. Then, the K-GA-adjustment algorithm has been adopted to find the solutions that satisfy the constraints. To reduce the computing time needed, an approximate function for the lower bound of the optimal number of disinfection staff is obtained by constructing a Continuous Approximation (CA) model. A case study based on real location data of shared bikes in Chengdu, China, is performed to show how the maintenance department could adopt the optimization framework to design an efficient scheme to clean and disinfect the shared bikes.