Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 nullmutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss.deafness | sensory system | ion channel H earing and balance depend on the transduction of mechanical stimuli into electrical signals. Transduction involves activation of mechanically gated ion channels near the tips of the stereocilia, specialized microvilli that form the hair bundles that project from the surface of sensory hair cells (1). Stereocilia have a cytoskeletal core composed of tightly packed, cross-linked, and uniformly polarized actin filaments (2, 3). Stereociliary length is regulated to ensure the characteristic staircase-like structure of each bundle, whose overall size and shape depends on location along the sensory organ (4). In the mammalian cochlea, hair bundles usually include three rows of stereocilia coupled by several types of extracellular links (2, 5). The embryonic and postnatal development of the bundle involves elongation and thickening of stereocilia, as well as elimination of redundant stereocilia (4, 5).In the adult cochlea, the height of stereocilia within each row is similar, not only within a single hair bundle but also between the bundles of adjacent hair cells, indicating a sophisticated level of control over growth (5, 6). Stereociliary growth and maintenance involves actin-binding proteins such as espin (7,8), plastin (9), twinfilin 2 (10), gelsolin (11), and unconventional myosin motors including myosin XVa (12) and myosin IIIa (13). Currently, we do not have a complete molecular understanding of hair bundle structure or how its growth and maintenance are controlled. Recently, we showed that epidermal growth factor receptor pathway substrate 8 (Eps8) (14) is located ...