We rederive the expansion of the Bergman kernel on Kahler manifolds developed
by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation
theory, and generalize it to supersymmetric quantum mechanics. One physics
interpretation of this result is as an expansion of the projector of wave
functions on the lowest Landau level, in the special case that the magnetic
field is proportional to the Kahler form. This is relevant for the quantum Hall
effect in curved space, and for its higher dimensional generalizations. Other
applications include the theory of coherent states, the study of balanced
metrics, noncommutative field theory, and a conjecture on metrics in black hole
backgrounds. We give a short overview of these various topics. From a
conceptual point of view, this expansion is noteworthy as it is a geometric
expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time
expansion for the heat kernel, but in this case describing the long time limit,
without depending on supersymmetry.Comment: 27 page