A class of coupled-multi-line quasi-elliptic-type balanced diplexer device with closely-spaced channels and its balanced coupling-routing-diagram formalism to simultaneously model its differential-and common-mode operation are reported. It employs third-order combline-type bandpass filters (BPFs) in its filtering channels, whose resonating lines are connected at one of their extremes to the symmetry plane of the balanced-circuit structure (i.e., virtual grounds for the differential mode), along with a multi-extracted-pole/coupled-multi-line dual-band BPF junction and single-band BPF output cells. In differential-mode operation, the dual-band BPF junction adds one in-band pole to each diplexer channel and three transmission zeros (TZs) to both channels, whereas the single-band BPF output cells incorporate one in-band pole and two TZs in their corresponding channels. In this manner, increased-selectivity differential-mode BPF transfer functions for the diplexer channels when compared to those of its third-order combline-type BPFs are obtained. Grounded resistors are connected at the symmetry plane of the balanced diplexer for all the resonating lines of the combline-type BPFs, which become detuned with regard to the poles associated to the dualband BPF junction and the single-band BPF output cells under common-mode excitation. This allows for high common-mode suppression levels in wide spectral ranges to be realized for both channels while maintaining the same TZs as in differentialmode operation. For practical-validation purposes, a 1.6/1.8-GHz microstrip prototype is manufactured and tested.