Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning
Huda Kadhim Tayyeh,
Ahmed Sabah Ahmed AL-Jumaili
Abstract:Federated learning (FL), a decentralized approach to machine learning, facilitates model training across multiple devices, ensuring data privacy. However, achieving a delicate privacy preservation–model convergence balance remains a major problem. Understanding how different hyperparameters affect this balance is crucial for optimizing FL systems. This article examines the impact of various hyperparameters, like the privacy budget (ϵ), clipping norm (C), and the number of randomly chosen clients (K) per commun… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.