Bismuth (Bi) has emerged as a prospective candidate as Na-ion and potassium-ion battery anodes because of its unique advantages of low cost, high theoretical gravimetric capacity (386 mAh g −1 ), and superior volumetric capacity (3800 mAh cm −3 ). However, the low electronic conductivity and the huge volume expansion of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinder its practical application. To overcome these issues, we propose a rational design: Bi@C nanospheres with the unique petaloid core−shell structure are synthesized in one step for the first time and then combined with different contents of graphene (GR) nanosheets to form the composites Bi@C@GR. The Bi@C nanospheres with a core−shell structure are beneficial to shortening the transmission path of electrons/ions and reducing the risk from structural rupture of the particles during cycling. In addition, the combination of Bi@C nanospheres and porous GR could greatly improve the conductivity and prevent the aggregation of particles, which is conducive to better cycling stability and rate performance. Consequently,