We study stable axially and spherically symmetric spatial solitons in plasma with diatomic ions. The stability of a soliton against collapse is provided by the interaction of induced electric dipole moments of ions with the rapidly oscillating electric field of a plasmoid. We derive the new cubic-quintic nonlinear Schrödinger equation, which governs the soliton dynamics and numerically solve it. Then we discuss the possibility of implementation of such plasmoids in realistic atmospheric plasma. In particular, we suggest that spherically symmetric Langmuir solitons, described in the present work, can be excited at the formation stage of long-lived atmospheric plasma structures. The implication of our model for the interpretation of the results of experiments for the plasmoids generation is discussed