Intermetallic as well as (carbides and nitrides) interstitial compounds present functional and structural properties which make these materials necessary for advanced technologies. Meanwhile fabrication routes based on melting and casting or plastic deformation, are usually far to compete with powder metallurgy processes likely to provide near net shaped parts and components. The present study is devoted to a model system exemplified by nitrided iron and steel powders for which the thermal stability of nitrides is severely decreasing when temperature exceeds critical values during densification treatments. Thanks to the analysis of the thermal treatment induced transformations mainly characterised by Mö ssbauer spectroscopy, the consequences and impact on driving forces for densification under critical thermal conditions are discussed in order to achieve an optimised sintering process and an actual development.