A new γ-Fe 2 O 3 MION ferrofluid has been developed with a salt-assisted solid-state reaction. Characterizations show that the ferrofluid is composed of maghemite nanoparticles with a mean diameter of 2.7 nm. Though the nanoparticles are ultrafine, they are well crystallized, with a saturation magnetization value of 34.7 emu g −1 , making them suitable for MRI applications. In spite of the absence of any surfactant, the ferrofluid can be stable for more than 6 months. An in vitro cytotoxicity test revealed good biocompatibility of the maghemite nanoparticles, suggesting that they may be further explored for biomedical applications. NMR measurements revealed significantly reduced water proton relaxation times T 1 and T 2. The MR images of the nanoparticles in aqueous dispersion were investigated using a 3 T clinical MR imager. These preliminary experiments have demonstrated the potential of the as-synthesized ultrafine, cap-free maghemite MIONs in functional molecular imaging for biomedical research and clinical diagnosis.