The propagation of the weak shock wave (WSW) to the tunnel exits and their radiation as micro-pressure waves (MPWs) may cause sonic booms or structural resonance of buildings, posing potential hazards to humans, animals, and buildings in the exit's environment. The characteristics of the WSW and sonic booms of a maglev train/tube coupling model were studied based on the two-dimensional axisymmetric unsteady Reynolds average Navier–Stokes turbulence model. In the later stage of a MPW, the formation mechanism, geometry, and kinematic characteristics of compressible vortex rings (CVRs) were systematically analyzed. The inertial effect causes the initial wavefront to gradually transition from a Gaussian-shape waveform to a triangular waveform during its propagation, eventually coalescing into a WSW. The overpressure, density jump, and shock Mach number at the WSW location all increase with the increasing train speed, while the WSW thickness decreases accordingly. The formation distance of the WSW is inversely proportional to the amplitude of the initial wavefront gradient, and the WSW directly causes the occurrence of the exit sonic boom. The MPW amplitude has significant directionality with a largest value in the axial direction. Within the speed range of 450–700 km/h, the sound pressure level of the MPW exceeds the hearing threshold and even reaches the feeling threshold. The evolution of CVRs includes primary CVR, secondary CVR, and Kelvin–Helmholtz vortices. Primary CVR has the greatest impact on the axial MPW among them. The occurrence of CVRs will cause a second small noise level other than the sonic boom.