We show that every closed ideal of a Segal algebra on a compact group admits a central approximate identity which has the property, called condition (U), that the induced multiplication operators converge to the identity operator uniformly on compact sets of the ideal. This result extends a known one due to H. Reiter who has considered the problem under the condition that the Segal algebra is symmetric. We prove further that a closed right ideal of a Segal algebra on a compact group admits a left approximate identity satisfying condition (U) if and only if it is approximately complemented as a subspace of the Segal algebra; if in addition the Segal algebra is symmetric, then a closed left ideal admits a right approximate identity satisfying condition (U) if and only if it is approximately complemented. © 2002 Elsevier Science (USA)