2020
DOI: 10.3390/math8010127
|View full text |Cite
|
Sign up to set email alerts
|

Banach Lattice Structures and Concavifications in Banach Spaces

Abstract: Let ( Ω , Σ , μ ) be a finite measure space and consider a Banach function space Y ( μ ) . We say that a Banach space E is representable by Y ( μ ) if there is a continuous bijection I : Y ( μ ) → E . In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?