In recent years, hybrid perovskite solar cells (PSCs) have attracted much attention owing to their low cost, easy fabrication, and high photoelectric conversion efficiency. Nevertheless, solution‐processed perovskite films usually show substantial structural disorders, resulting in ion defects on the surface of lattice and grain boundaries. Herein, a series of D–π–A porphyrins coded as CS0, CS1, and CS2 that can effectively passivate the perovskite surface, increase VOC and FF, reduce the hysteresis effect, enhance power conversion efficiency to be higher than 22%, and improve the device stability is developed. The results in this study demonstrated that the donor–π–acceptor type porphyrin derivatives are promising passivators that can improve the cell performance of PSCs.