We present a theoretical model for the effect of symmetry breaking introduced by the doping of semiconductor nanocrystals with Coulomb impurities. The presence of a Coulomb center breaks the nanocrystal symmetry and affects its optical properties through mixing of the hole spin and parity sublevels, breaking the selection rules responsible for the exciton dark state in undoped nanocrystals. After reviewing the effects on the exciton fine structure and optical selection rules using symmetry theory, we present a perturbative model to quantify the effects. We find that the symmetry breaking proceeds by two mechanisms: First, mixing by even parity terms in the Coulomb multipole expansion results in an exciton fine structure consisting of three optically active doublets which are polarized along x, y and z axes with a ground optically passive dark exciton state, and second, odd parity terms which break inversion symmetry significantly activate optical transitions which are optically forbidden in the 1