Preparation of MgO and Mg0.9Li0.2O materials using self-propagating combustion method are done to investigate the effect of substitution doping on the band gap energy. The synthesis condition has been optimized to obtain pure and single phase of MgO and Mg0.9Li0.2O materials and was confirmed by X-Ray Diffraction (XRD). The morphology obtained from field emission scanning electron microscopy (FESEM) is spherical and rounded polyhedral shape with agglomeration of crystallites for MgO and Mg0.9Li0.2O materials respectively. The crystallite size of MgO and Mg0.9 Li0.2O samples is between 50 nm to 120 nm and 200 nm to 1500 nm respectively. The band gap was determined by UV-Vis NIR spectrophotometer and it was found that the band gap obtained for MgO nanostructure is 6.10 eV which is lower than bulk MgO of 7.8 eV. The presence of Li in the MgO had caused changes in morphology, crystallite size and band gap narrowing to 3.83 eV.