Integration of ferroelectric materials into novel technological applications requires low coercive field materials, and consequently, design strategies to reduce the ferroelectric switching barriers. In this first principles study, we show that biaxial strain, which has a strong effect on the ferroelectric ground states, can also be used to tune the switching barrier of hybrid improper ferroelectric Ruddlesden–Popper oxides. We identify the region of the strain-tolerance factor phase diagram where this intrinsic barrier is suppressed, and show that it can be explained in relation to strain-induced phase transitions to nonpolar phases.