We present a band structure approach with a molecular dynamics cluster optimization which accounts for the various structural modifications related to the non‐stoichiometry of LiNbO3 crystals. The variation of the optical properties with the deviation from the stoichiometric composition can be understood within this approach. Particular role of the electron‐phonon contributions to the electrooptics coefficient is shown. Model calculations yield a large dependence of the electrooptis coefficient r22 on the crystal composition, in agreement with the experimental data. The observed minimum of the r22 coefficient versus the non‐stoichiometry is interpreted as originated from the non‐centrosymmetry in the electrostatic potential distribution around Nb‐O6 clusters.