Abstract:This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to f… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.