2021
DOI: 10.1088/1742-6596/1918/4/042143
|View full text |Cite
|
Sign up to set email alerts
|

Bank predictions for prospective long-term deposit investors using machine learning LightGBM and SMOTE

Abstract: Banks try to get profit from society in various ways. One way is to use long-term deposit investment offers. If the product offering process for potential investors is not carefully considered, it will waste resources. Therefore, this study analyzes the accuracy of the predictions of consumers who have a high chance of participating in this program. The dataset used is historical bank data provided by Kaggle. In previous research, accuracy prediction has been carried out, but the accuracy is still low because … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…Serta belum adanya penelitian yang mengangkat optimalisasi ataupun improvisasi model prediksi menggunakan suatu teknik seperti salah satu contohnya adalah SMOTE (Synthetic Minority Over-sampling Technique). Padahal sebuah studi menunjukkan teknik SMOTE meningkatkan kinerja model terutama untuk kasus dataset yang tidak seimbang [14].…”
Section: Pendahuluanunclassified
“…Serta belum adanya penelitian yang mengangkat optimalisasi ataupun improvisasi model prediksi menggunakan suatu teknik seperti salah satu contohnya adalah SMOTE (Synthetic Minority Over-sampling Technique). Padahal sebuah studi menunjukkan teknik SMOTE meningkatkan kinerja model terutama untuk kasus dataset yang tidak seimbang [14].…”
Section: Pendahuluanunclassified
“…A few studies have dealt with customer deposits prediction, and Pangrahi and Patnaik (2020) tried to forecast customer behavior from a bank direct marketing survey using neural network techniques. Muslim et al (2020) in their proposed study applied logistic regression, random forest and light GBM to predict long-term deposit possibilities. Patway et al (2021) used three classification techniques, which are the Naı €ve Bayes, ANN and support vector machine.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Predicting corporate bankruptcy requires detection stages from bankruptcy datasets [7]. The detected bankruptcy dataset will provide information to improve the accuracy of the results.…”
Section: Introductionmentioning
confidence: 99%