2022
DOI: 10.3917/resg.152.0127
|View full text |Cite
|
Sign up to set email alerts
|

Bankruptcy prediction modeling in real-world conditions: A contrast of boosting algorithm and logistic regression

Abstract: Cet article vise à construire des modèles de prédiction de la faillite en utilisant des techniques qui prennent en considération les problèmes liés aux bases de données déséquilibrées, en appliquant des techniques de type logit, boosting et de suréchantillonnage à un ensemble de données déséquilibré de 2266 entreprises belges. La technique de suréchantillonnage des minorités synthétiques (SMOTE) est utilisée pour tester la précision des modèles sur différentes proportions d’échantillons déséquilibrés. Les résu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 48 publications
0
1
0
Order By: Relevance
“…A total of nine financial indicators which are categorized into liquidity, profitability, and indebtedness (Brédart and Correa-Mejía, 2022); and three control variables, were measured. According to Terreno et al (2020), liquidity represents a firm's capacity to face its financial and commercial obligations in the short term.…”
Section: Interest and Control Variablesmentioning
confidence: 99%
“…A total of nine financial indicators which are categorized into liquidity, profitability, and indebtedness (Brédart and Correa-Mejía, 2022); and three control variables, were measured. According to Terreno et al (2020), liquidity represents a firm's capacity to face its financial and commercial obligations in the short term.…”
Section: Interest and Control Variablesmentioning
confidence: 99%