Amorphous carbon films are deposited employing high power impulse magnetron sputtering (HiPIMS) at pulsing frequencies of 250 Hz and 1 kHz. Films are also deposited by direct current magnetron sputtering (dcMS), for reference. In both HiPIMS and dcMS cases, unipolar pulsed negative bias voltages up to 150 V are applied to the substrate to tune the energy of the positively charged ions that bombard the growing film. Plasma analysis reveals that HiPIMS leads to generation of a larger number of ions with larger average energies, as compared 2 to dcMS. At the same time, the plasma composition is not affected, with Ar + ions being the dominant ionized species at all deposition conditions. Analysis of the film properties shows that HiPIMS allows for growth of amorphous carbon films with sp 3 bond fraction up to 45% and density up to 2.2 gcm -3 . The corresponding values achieved by dcMS are 30% and 2.05 gcm -3 , respectively. The larger fraction of sp 3 bonds and mass density found in films grown by HiPIMS are explained in light of the more intense ion irradiation provided by the HiPIMS discharge as compared to the dcMS one.