Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study investigates the physical, mechanical, and structural characteristics of handmade paper samples derived from cellulose extracted from grass clippings using two distinct methods as follows: (1) alkali treatment and (2) alkali treatment followed by bleaching, coupled with the incorporation of barium sulfate as a mineral filler. Our investigation revealed that the handmade paper samples’ densities, moisture contents, and thicknesses varied within the ranges of 0.436 to 0.549 g/cm3, 5.60 to 2.51%, and 0.41 to 0.50 mm, respectively. The tensile strength and folding endurance of the papers produced through alkali treatment with barium sulfate were notably superior to those produced from bleached pulp and barium sulfate. Our analysis indicates that several critical factors, including paper density, thickness, the crystallinity index, and the microfibrillar structure of cellulose, intricately influence the mechanical and strength properties of the samples. Using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques, we identified characteristic cellulose bonds and examined cellulose’s crystalline and amorphous phases. Additionally, the crystallinity index of the samples was determined using both the Segal and peak deconvolution methods. Scanning electron microscopy (SEM) micrographs revealed interconnected networks of cellulose fibers with varying thicknesses and lengths, along with incorporated mineral filler within the cellulose fiber structure. Variations in mineral particle retention were attributed to the presence or absence of cellulose microfibrils. These findings contribute to our understanding of the observed strength characteristics of the paper samples and underscore the potential applications of cellulose derived from grass clippings, especially when combined with barium sulfate as a mineral filler in paper production.
This study investigates the physical, mechanical, and structural characteristics of handmade paper samples derived from cellulose extracted from grass clippings using two distinct methods as follows: (1) alkali treatment and (2) alkali treatment followed by bleaching, coupled with the incorporation of barium sulfate as a mineral filler. Our investigation revealed that the handmade paper samples’ densities, moisture contents, and thicknesses varied within the ranges of 0.436 to 0.549 g/cm3, 5.60 to 2.51%, and 0.41 to 0.50 mm, respectively. The tensile strength and folding endurance of the papers produced through alkali treatment with barium sulfate were notably superior to those produced from bleached pulp and barium sulfate. Our analysis indicates that several critical factors, including paper density, thickness, the crystallinity index, and the microfibrillar structure of cellulose, intricately influence the mechanical and strength properties of the samples. Using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques, we identified characteristic cellulose bonds and examined cellulose’s crystalline and amorphous phases. Additionally, the crystallinity index of the samples was determined using both the Segal and peak deconvolution methods. Scanning electron microscopy (SEM) micrographs revealed interconnected networks of cellulose fibers with varying thicknesses and lengths, along with incorporated mineral filler within the cellulose fiber structure. Variations in mineral particle retention were attributed to the presence or absence of cellulose microfibrils. These findings contribute to our understanding of the observed strength characteristics of the paper samples and underscore the potential applications of cellulose derived from grass clippings, especially when combined with barium sulfate as a mineral filler in paper production.
Medical tubing, particularly cardiovascular tubing, is a critical area of research where continuous improvements are necessary to advance medical devices and improve patient care. While polymers are fundamental for these applications, on their own they present several limitations such as insufficient X-ray contrasting capabilities. As such, polymer composites utilizing radiopaque fillers are a necessity for this application. For medical tubing in vivo, radiopacity is a crucial parameter that virgin polymers alone fall short in achieving due to limited X-ray absorption. To address this shortcoming, inorganic radiopaque fillers such as barium sulphate (BaSO4) and bismuth oxychloride (BiOCl) are incorporated into polymer matrices to increase the X-ray contrast of the manufactured tubing. It is also known, however, that the incorporation of these fillers can affect the mechanical, physical, and thermal properties of the finished product. This research evaluated the impact of incorporating the two aforementioned fillers into Pebax® 6333 SA01 MED at three different loading levels (10, 20, and 30 wt.%) on the physical, thermal, and mechanical properties of the composite. Composites were prepared by twin screw extrusion and injection molding followed by characterization of the mechanical (tensile, impact, and flexural), thermal (DSC), rheological (MFI), and physical (density and ash content) properties. The performed analysis shows that BiOCl enhanced the aesthetic properties, increased stiffness, and maintained flexibility while having minimal impact on the tensile and impact properties. When comparing BiOCl to BaSO4-filled composites, it was clear that depending on the application of the polymer composite, BiOCl may provide more desirable properties. The study highlights the importance of optimizing filler concentration and processing conditions to achieve desired composite properties for specific medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.