O valor da curva-número (CN) é um parâmetro empírico usado na determinação do escoamento superficial direto a partir dos excessos de precipitações, sendo dependente das mudanças de uso e cobertura da superfície. Imagens de alta resolução espacial são importantes para identificar tais mudanças em bacias hidrográficas urbanas. O objetivo deste trabalho foi comparar os efeitos de diferentes mapas de uso e cobertura, produzidos a partir de classificações não-supervisionada (K-médias) e supervisionadas (MaxVer, SAM e SVM) em uma imagem orbital de alta resolução espacial, no cálculo do valor CN da bacia hidrográfica urbana do Arroio Pepino (Pelotas, RS). A hipótese é de que diferentes algoritmos de classificação produzem diferentes mapas de superfície que por sua vez afetam o valor CN final. As classificações foram realizadas em uma imagem RapidEye e 10 classes foram identificadas: água, asfalto, estrada de terra, vegetação (3 tipos) e coberturas (4 tipos). O valor CN de cada classe foi obtido pela comparação com valores tabulados, e o valor CN total foi calculado pela média ponderada considerando a área proporcional de cada classe. O SVM foi o algoritmo de melhor desempenho (acurácia global de 70,36% e índice kappa de 0,66). Os valores finais de CN apresentaram distintas intensidades: CNtotal = 88,96 para SAM, CNtotal = 89,66 para K-médias, CNtotal = 89,94 para SVM e CNtotal = 90,71 para MaxVer. A proximidade entre estes valores foi influenciada pela baixa capacidade de drenagem da bacia estudada mesmo em áreas vegetadas. Diferenças nas proporções das classes afetam o valor do CN final da bacia, e sua qualidade é altamente dependente da acurácia da imagem classificada. O valor da curva-número (CN) é um parâmetro empírico usado na determinação do escoamento superficial direto a partir dos excessos de precipitações, sendo dependente das mudanças de uso e cobertura da superfície. Imagens de alta resolução espacial são importantes para identificar tais mudanças em bacias hidrográficas urbanas. O objetivo deste trabalho foi comparar os efeitos de diferentes mapas de uso e cobertura, produzidos a partir de classificações não-supervisionada (K-médias) e supervisionadas (MaxVer, SAM e SVM) em uma imagem orbital de alta resolução espacial, no cálculo do valor CN da bacia hidrográfica urbana do Arroio Pepino (Pelotas, RS). A hipótese é de que diferentes algoritmos de classificação produzem diferentes mapas de superfície que por sua vez afetam o valor CN final. As classificações foram realizadas em uma imagem RapidEye e 10 classes foram identificadas: água, asfalto, estrada de terra, vegetação (3 tipos) e coberturas (4 tipos). O valor CN de cada classe foi obtido pela comparação com valores tabulados, e o valor CN total foi calculado pela média ponderada considerando a área proporcional de cada classe. O SVM foi o algoritmo de melhor desempenho (acurácia global de 70,36% e índice kappa de 0,66). Os valores finais de CN apresentaram distintas intensidades: CNtotal = 88,96 para SAM, CNtotal = 89,66 para K-médias, CNtotal = 89,94 para SVM e CNtotal = 90,71 para MaxVer. A proximidade entre estes valores foi influenciada pela baixa capacidade de drenagem da bacia estudada mesmo em áreas vegetadas. Diferenças nas proporções das classes afetam o valor do CN final da bacia, e sua qualidade é altamente dependente da acurácia da imagem classificada.