2024
DOI: 10.1063/5.0225742
|View full text |Cite
|
Sign up to set email alerts
|

Barrier-crossing transition-path times for non-Markovian systems

L. Lavacchi,
R. R. Netz

Abstract: By simulation and asymptotic theory, we investigate the transition-path time of a one-dimensional finite-mass reaction coordinate crossing a double-well potential in the presence of non-Markovian friction. First, we consider single-exponential memory kernels and demonstrate that memory accelerates transition paths compared to the Markovian case, especially in the low-mass/high-friction limit. Then, we generalize to multi-exponential kernels and construct an asymptotic formula for the transition-path time that … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?