Recent medical literature shows that the application of artificial intelligence (AI) models in gastrointestinal pathology is an exponentially growing field, with promising models that show very high performances. Regarding inflammatory bowel disease (IBD), recent reviews demonstrate promising diagnostic and prognostic AI models. However, studies are generally at high risk of bias (especially in AI models that are image-based). The creation of specific AI models that improve diagnostic performance and allow the establishment of a general prognostic forecast in IBD is of great interest, as it may allow the stratification of patients into subgroups and, in turn, allow the creation of different diagnostic and therapeutic protocols for these patients. Regarding surgical models, predictive models of postoperative complications have shown great potential in large-scale studies. In this work, the authors present the development of a predictive algorithm for early post-surgical complications in Crohn's disease based on a Random Forest model with exceptional predictive ability for complications within the cohort. The present work, based on logical and reasoned, clinical, and applicable aspects, lays a solid foundation for future prospective work to further develop post-surgical prognostic tools for IBD. The next step is to develop in a prospective and multicenter way, a collaborative path to optimize this line of research and make it applicable to our patients.