The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper introduces a satellite navigation DOA parameter estimation method based on deconvolution beamforming. By exploiting the translational invariance property of the uniform linear array pattern, the deconvolution process is applied to the de-spread array pattern of satellite navigation signals, achieving high-precision estimation of DOA parameters. This method can achieve high-precision blind DOA estimation of multiple signal sources while significantly reducing the estimation complexity. Compared with traditional methods, precise DOA estimation can be achieved even in low-signal-to-noise-ratio conditions and with a small number of elements in the array. The theoretical analysis and simulation results verify the effectiveness of the proposed algorithm.