This study highlights the importance of quantifying groundwater resources for the Monahans and Kermit dune fields in the northern Chihuahua Desert, West Texas, USA, as potential contributors to the regional Pecos Valley Aquifer (PVA). Dunal aquifers in arid environments are often unquantified, may augment regional groundwater resources, and can be compromised by anthropogenic activity. Sedimentary architecture models of these dune fields show perched aquifers with water tables 1–10 m below the surface and southwestern groundwater flow sub-parallel to a Pleistocene/Pliocene aquitard. The deuterium and oxygen isotopic ratios for groundwater from the Kermit and Monahans dune fields show pronounced evaporative isotopic depletion and less isotopic variability than corresponding rainfall, particularly for deuterium values. The radiocarbon and δ13C analyses of dissolved inorganic carbon (DIC) indicate that recharge occurs through enhanced capture of recent precipitation on mostly bare active dunes where infiltration rates are >250 mm/h. In contrast, more evolved 14C values at the western margin (FM = 0.84) and at 30 m below the surface (FM = 0.76) of the dunes, similar to proximal Fm values from the PVA (0.89–0.82), may indicate dissolution of older (>100 ka) DIC from buried playa-lake sediments and less direct atmospheric influence. Mixing models for DIC source partitioning highlighted possible groundwater contamination with hydrocarbon up to 24% in the PVA and in the dunal aquifers. The perched aquifers of the Monahans and Kermit dune fields each contain water volumes >0.1 km3 and may contribute up to 18% of the total annual recharge to the PVA.