Abstract:Global climate change demands carbon-negative innovations to reduce the concentration of atmospheric carbon dioxide (CO2). Cyanobacteria can fix CO2 from the atmosphere and can be genetically reprogrammed for the production of biofuels, chemicals and food products, making an ideal microbial chassis for carbon-negative biotechnology. However, the progress seems to be slowed down due to the lagging-behind synthetic biology toolkits, especially the CRISPR-Cas-based genome-editing tools. As such, we developed a ba… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.