Summary
An electrocardiogram (ECG) signal is a record of the electrical activities of heart muscle and is used clinically to diagnose heart diseases. An ECG signal should be presented as clear as possible to support accurate decisions made by doctors. This article proposes different combinations of combined adaptive algorithms to derive different noise‐cancelling structures to remove (denoise) different kinds of noise from ECG signals. The algorithms are applied to the following types of noise: power line interference, baseline wander, electrode motion artifact, and muscle artifacts. Moreover, the results of the suggested models and algorithms are compared with those of conventional denoising tools such as the discrete wavelet transform, an adaptive filter, and a multilayer neural network (NN) to ensure the superiority of the proposed combined structures and algorithms. Furthermore, the hybrid concept is based on dual, triple, and quadruple combinations of well‐known algorithms that derive adaptive filters, such as the least mean squares, normalized least mean squares and recursive least squares algorithms. The combinations are formulated based on partial update, variable step‐size (VSS), and second iterative VSS algorithms, which are considered in different combinations. In addition, biased NN and unbiased linear neural network (ULNN) structures are considered. The performance of the different structures and related algorithms are evaluated by measuring the post‐signal‐to‐noise ratio, mean square error, and percentage root mean square difference.