Baseline wander (BW) is a common low frequency artifact in electrocardiogram (ECG) signals. The prime cause from which BW arises is the patient's breathing and movement. To facilitate reliable visual interpretation of the ECG and to discern particular patterns in the ECG signal, BW needs to be removed. In this paper, a novel BW removal method is presented. The hypothesis is based on the observation that ECG signal variation covaries with its BW. As such, the P, Q, R, S, and T peaks will follow the baseline drift. On this basis, the following proposition is true: a reliable approximation of the baseline drift can be obtained from the shape derived from the interpolation of one form of the ECG signal peak (peak envelope). The simulation was performed by adding artificial BW to ECG signal recordings. The signal-to-noise ratio, mean squared error, and improvement factor criteria were used to numerically evaluate the performance of the proposed approach. The technique was compared to that of the Hilbert vibration decomposition method, an empirical-mode decomposition technique and mathematical morphology. The results of the simulation indicate that the proposed technique is most effective in situations where there is a considerable distortion in the baseline wandering.