2021
DOI: 10.2991/assehr.k.211122.044
|View full text |Cite
|
Sign up to set email alerts
|

Bases in Min-Plus Algebra

Abstract: In classical linear algebra, a basis is a vector set that generates all elements in the vector space and that vector set is a linear independence set. However, the definitions of the linear dependence and independence in min-plus algebra are little more complex given that the min-plus algebra is the linear algebra over the commutative idempotent semiring. The definition of the linear dependence (independence) is used in this paper is Gondran-Minoux linear dependence (independence). A finite set is Gondran-Mino… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 10 publications
0
1
0
Order By: Relevance
“…Penerapan aljabar min-plus pada berbagai bidang sudah banyak dilakukan, antara lain masalah rute tercepat distribusi susu (Suwanti et al, 2017), masalah simulasi produksi susu (Pramesthi, 2021), masalah distribusi kentang (Putri, 2016), masalah jaringan angkutan (Susilowati, 2018). Penelitian pengembangan aljabar min-plus juga sudah beberapa dilakukan antara lain masalah dualitas max-plus dan min-plus jaringan (Liebeherr, 2017), masalah arsitektur jaringan, (Darbon et al, 2021), nilai eigen pada matriks atas aljabar min-plus (Hook, 2017), (Rahayu et al, 2021), masalah aljabar min-plus interval (Awallia et al, 2020), dan basis atas aljabar min-plus (Rosyada et al, 2021).…”
Section: Abstrakunclassified
“…Penerapan aljabar min-plus pada berbagai bidang sudah banyak dilakukan, antara lain masalah rute tercepat distribusi susu (Suwanti et al, 2017), masalah simulasi produksi susu (Pramesthi, 2021), masalah distribusi kentang (Putri, 2016), masalah jaringan angkutan (Susilowati, 2018). Penelitian pengembangan aljabar min-plus juga sudah beberapa dilakukan antara lain masalah dualitas max-plus dan min-plus jaringan (Liebeherr, 2017), masalah arsitektur jaringan, (Darbon et al, 2021), nilai eigen pada matriks atas aljabar min-plus (Hook, 2017), (Rahayu et al, 2021), masalah aljabar min-plus interval (Awallia et al, 2020), dan basis atas aljabar min-plus (Rosyada et al, 2021).…”
Section: Abstrakunclassified
“…If π‘Ž, 𝑏 ∈ ℝ πœ€β€² , π‘Ž βŠ• β€² 𝑏 = min (π‘Ž, 𝑏), π‘Ž βŠ— β€² 𝑏 = π‘Ž + 𝑏 (Suroto, 2022). Furthermore, min-plus algebra has an idempotent commutative semiring structure and represented as ℝ π‘šπ‘–π‘› = (ℝ πœ€ β€² ; βŠ• β€² ,βŠ— β€² ) (Akian et al, 2007;Rosyada et al, 2021). Min-plus algebra can also be applied in everyday life, this has been discussed by several researchers including the fastest route modeling (Suprayitno, 2017;Susilowati & Fitriani, 2019), fiber networks (Li & Zhao, 2012), and petri nets (Farhi et al, 2009).…”
Section: A Introductionmentioning
confidence: 99%