Films of poly(ethylene terephthalate) (PET) have been subjected to a low frequency (70 kHz) helium discharge, with a non-symmetrical configuration of electrodes, in order to study the treatment conditions for which the 'ageing' effect is slowed down. Treatments were made for different gas flow rates (40, 70 and 100 sccm) and different exposure times (1, 10 and 30 s). Emission spectroscopy and mass spectrometry were used to characterize the discharge plasma. The resulting modifications to the polymer surface were analysed via contact angle measurements and the XPS technique. It is pointed out that treatments on an He discharge induce both a functionalization and a cross linking of the uppermost layers of the polymer film. The residual oxygen, which partially originates within the polymer, induces surface oxidation. The cross-linked content critically depends on the residence time and concentration of implicated species. It seems that a change in the surface work function takes place as a result of a surface restructuring in the earliest stages of the reactions. This could involve an increase in the rate constant for the surface de-excitation of the helium metastables in the presence of the polymer. A contribution to the understanding of the competitive processes of cross linking and functionalization, as a function of the helium flow rate, is accomplished.