This study aims to evaluate the physical properties of non-sintering cement (NSC) concrete by adding phosphogypsum (PG) and waste lime (WL) to granulated blast furnace slag (GBFS) as sulfate and alkali activators. The study measured changes in the physical properties of fresh concrete using NSC, and the compressive, flexural and tensile strength of the hardened concrete for 360 days. In the results of the experiment, concrete using NSC was superior to that using Ordinary Portland Cement (OPC) or blast-furnace slag cement (BSC) in terms of fluidity and hydration heat characteristics. In addition, the early strength of concrete using NSC was relatively low at around 85% of the strength of concrete using OPC on day 3, but this was reversed from day 7 and the difference between OPC and BSC grew steadily larger over time until day 360. The strength of concrete using NSC develops continuously because the GBFS component eluting as GBFS is activated by PG and WL, and due to their reaction, ettringite, C-S-H gel, etc. are generated steadily for a long time, and there is no transition zone in the interface between the aggregate and paste because Ca (OH) 2 is hardly generated from the hydration process, and as a result, interfacial adhesion is reinforced with aging.