The objective of this work was to design a versatile readout circuit for patch-type wearable devices consisting of a Transimpedance Amplifier (TIA). The TIA performs Current to Voltage (I–V) conversion, the most widely used technique for amperometry and impedance measurement for various types of electrochemical sensors. The proposed readout circuit employs a digitally controllable feedback resistor (Rf) technique in the TIA to improve accuracy, which can be utilized in a variety of electrochemical sensors within a current range of 0.1 µA–100 µA. It is designed to accommodate multiple sensors simultaneously to track multiple target analytes for high accuracy and versatile usage. The readout circuit consists of low power operational amplifier (op–amp) and digital circuit blocks, is designed and fabricated with Magna 0.18 µm Complementary Metal Oxide Semiconductor (CMOS) technology, which provides low power consumption and a high degree of integration. The design has a small size of 0.282 mm2 and low power consumption of 0.38 mW with a 3.3 V power supply, which are desirable factors in wearable device applications.