Given a real representation of the Clifford algebra corresponding to R p+q with metric of signature (p, q), we demonstrate the existence of two natural bilinear forms on the space of spinors. With the Clifford action of k-forms on spinors, the bilinear forms allow us to relate two spinors with elements of the exterior algebra. From manipulations of a rank four spinorial tensor introduced in [1], we are able to find a general class of identities which, upon specializing from four spinors to two spinors and one spinor in signatures (1,3) and (10,1), yield some well-known Fierz identities. We will see, surprisingly, that the identities we construct are partly encoded in certain involutory real matrices that resemble the Krawtchouk matrices [4] [5].