Oil-bearing sandstone samples were collected from the Lower Cretaceous sequence in the Kharir-2 exploration well, Kharir oilfields (Eastern Yemen). The current study integrates biomarker of the aliphatic hydrocarbon fraction of the extracted oil with a new finding from the molecular structure of the oilasphaltene, in order to learn more about their properties, including organic matter (OM) input, depositional environment, and thermal maturity. The overall oil composition results show that the extracted oils have a high saturated hydrocarbon of up to 50% and significant levels of aromatic hydrocarbon and polar components, indicating generally paraffinic to naphthenic oil. This claim agrees with the molecular structure of the kerogen derived from the pyrolysis−gas chromatography result of the oilasphaltene, which suggests that the extracted oils from the Lower Cretaceous sandstone reservoirs are mainly paraffinic-naphthenicaromatic oils, exhibiting low wax content and originated from marine type II kerogen. The type II kerogen of the marine-source rock is also demonstrated by the bulk kinetic model of the oil-asphaltene for the extracted oils, with a broad range of E a between 38 and 62 kcal/mol and a frequency factor (A) of 1.52−1.47 × 10 13 /1 s. The biomarker characteristics of the aliphatic fraction show that the extracted oils from the Lower Cretaceous sandstone reservoirs were generated from clay-rich source rock, containing OM origin of mainly marine and terrestrial OM input and deposited under suboxic environmental conditions. Furthermore, the maturity-sensitive aliphatic biomarker parameters indicate that the extracted oils were generated from mature source rock in the range of the peakmature stage of the oil generation window. Oil−source rock correlation of various established biomarker proxies for OM origin, depositional environment, and lithology suggests that these extracted oils were possibly generated from a single source rock, and the Madbi clay-rich formation contributed to most of the extracted oil from the Lower Cretaceous sandstone reservoir rocks.