The worldwide textile sector is one of the most polluting and consuming natural resource value chains. In recent years, trends have demonstrated a linear model driven by fast fashion, increasing the sustainability problems of this sector. The European market and industry are changing the paradigm and promoting some actions towards a sustainable value chain. This paper applies a systematic approach to reviewing scientific research, where Life Cycle Assessment (LCA) is implemented as a tool to understand the impacts considering a holistic life cycle framework, from raw materials to the end-of-life of textile products. The methodology and criteria applied resulted in 73 articles used for qualitative analysis, of which 39 met the criteria for quantitative analysis. The quantitative results reported in the studies were organized and presented by phase of the garment production life cycle (production of fiber, yarn, fabric, manufacturing, and recovery/end of life). From a cradle-to-gate perspective, wool yarn production, by worsted processing, was the material with the highest values (95.70 kg CO2 eq/kg) for climate change/global warming potential, closely followed by silk fabric (80.90 kg CO2 eq/kg). Extending to a cradle-to-grave boundary, polyester had the highest values for the previously mentioned category, reaching a potential release of 40.28 kg CO2 eq per kilogram of polyester textile. When data was available, the user phase predominantly contributed to climate change/global warming potential. Additionally, there were significant differences in maximum and minimum values for some of the materials, which were related to methodological considerations, database inventory, and frequency of use and care considered by the different authors. The study also addresses the considerations and limitations of diverse LCA impact assessment tools.